FOLLOW US ON... FEEDBACK

Home
frontview no frame frontview vmo3D sideview no frame sideview vmo3D
Researchers Develop Solar Powered Bionic Eye PDF
Submit Your News
Ophthalmology and Optometry
Tuesday, 22 May 2012

Retina - Photovoltaic ChipUsing tiny solar-panel-like cells surgically placed underneath the retina, scientists at the Stanford University School of Medicine have devised a system that may someday restore sight to people who have lost vision because of certain types of degenerative eye diseases.

This device — a new type of retinal prosthesis — involves a specially designed pair of goggles, which are equipped with a miniature camera and a pocket PC that is designed to process the visual data stream. The resulting images would be displayed on a liquid crystal microdisplay embedded in the goggles, similar to what’s used in video goggles for gaming. Unlike the regular video goggles, though, the images would be beamed from the LCD using laser pulses of near-infrared light to a photovoltaic silicon chip — one-third as thin as a strand of hair — implanted beneath the retina. Electric currents from the photodiodes on the chip would then trigger signals in the retina, which then flow to the brain, enabling a patient to regain vision.

A study, published online May 13 in Nature Photonics, shows how scientists used rat retinas to assess the photodiode arrays in vitro, and how the diodes produced electric responses that are widely accepted indicators of visual activity. The scientists are now testing the system in live rats, taking both physiological and behavioral measurements, and are hoping to find a sponsor to support tests in humans.

“It works like the solar panels on your roof, converting light into electric current,” said Daniel Palanker, PhD, associate professor of ophthalmology and the paper’s senior author. “But instead of the current flowing to your refrigerator, it flows into your retina.”

Unlike other retinal prostheses devices being developed in the world — which require coils, cables or antennas inside the eye to deliver power and information to the retinal implant — the Stanford device uses near-infrared light to transmit images, thereby avoiding any need for wires and cables, and making the device thin and easily implantable. The proposed prosthesis is intended to help people suffering from retinal degenerative diseases, such as age-related macular degeneration and retinitis pigmentosa.